Data sheet PCF 1612

Table of Contents Page

1. Device View and Overview 2
1.1 Product Range 2
1.2 Device View 3-4
2. Characteristic Values 5
2.1 General Characteristic 5
2.2 Characteristic of Built-in Device 6
2.2.1 Built-in Device with 16 Keys 6
2.2.2 Built-in Device with 32 Keys 7
2.2.3 Built-in Device with 60 Keys 8
2.2.4 Built-in Device with 128 Keys 9
2.2.5 Built-in Device with 160 Keys 10
2.2.6 Built-in Device with 240 Keys 11
2.2.7 Built-in Device with 256 Keys 12
2.2.8 Mounting Procedure for Built-in Device 13
2.3 Characteristic of Operator Panel 14
2.3.1 Operator Panel with 16 Keys 14
2.3.2 Operator Panel with 32 Keys 15
2.3.3 Operator Panel with 60 Keys 16
2.3.4 Operator Panel with 64 Keys 17
2.3.5 Operator Panel with 128 Keys 18
2.3.6 Operator Panel with 240 Keys 19
2.3.7 Mounting Procedure for Operator Panel 20
2.3.8 Position of the holes for Operator Panel 21-23
3. Interface Description 24
$3.1 \quad$ Profibus-Interface 24
$3.2 \quad$ Profinet-Interface 24
3.1 EtherCat-Interface 24
4. Range of Variations 25
4.1 Housing Design 25
$4.2 \quad$ Interfaces 25
4.3 Power Connection 25
$4.4 \quad$ Z-Number 25
4.5 Ordering Code 26
5. Data Exchange 27
5.1 Commands from Keyboard to PLC 27
5.2 Commands from PLC to Keyboard 28-30
$5.3 \quad$ Profibus-Slave-Address 31
5.4 GSD-File shipped with Keyboard 31
6. Exception of the Profibus-Keyboard with 240 Keys 32
6.1 Commands from the PLC to the Keyboard 32

- ib prozessleittechnik GmbH \& Co. KG •im Neuacker 1 • D-91367 Weißenohe *
- Email info@IBProzesstechnik.de • Web http://www.IBProzesstechnik.de •

- Subject to change -

1. Device View and Overview

1.1 Product Range

256 Keys

160 Keys

1.2 Device View

Operator Panel with 60 Keys and blue illumination

Operator Panel removed from the switch cabinet

Build-in Device with 60 Key build-in in a Pulpit

Operator Panel with 60 Keys build-in a switch cabinet

2. Characteristic Values

2.1 General Characteristic

Atmospherically Data

- Operating temperature
- Storage temperature
- Humidity

Switching Matrix

- Key chamber (own product)
- Switching cycles
- Switching contacts
- Length of actuation path
- Key camber aperture
- Distance from centre to centre

Illuminable Cells

- Illuminable area
- Basic colour 1
- Basic colour 2
- Basic colour 3
- Composite colour
- Composite colour
- Composite colour
- Composite colour

Foil Layers

- Key cover
- Middle Layer
- Foil freezing and abrasion resistance

Fixing

- Project-Specific Colour Foils

Built-in Hooter 1

- Designation
- Frequency range
- Internal device usage
- Control

Built-in Hooter 2

- Designation
- Frequency range
- Internal device usage
- Control
$0 \ldots+50^{\circ} \mathrm{C}$
$-20 \ldots+70^{\circ} \mathrm{C}$
5% bis 95% non-condensing
ibpro20
minimum 1.000.000
2×2
$0,25 \mathrm{~mm}$
$20 \times 20 \mathrm{~mm}^{2}$
24 mm
$20 \times 20 \mathrm{~mm}^{2}$
green: 522-525 nm
red: 620-622 nm
blue: $467-470 \mathrm{~nm}$
yellow
magenta
cyan
white
$1^{\text {st }}$ transparent foil sticking to the mounting grid which intercepts the key
Colour foil with project-specific inscriptions and graphical symbols (a coloured foil will only be mounted, if explicitly ordered by the customer)
$2^{\text {nd }}$ transparent foil laid upon the colour foil to prevent it from mechanical abrasion and dazzling effects
These foils which are arranged upon one another like the layers of a sandwich are covered and fixed by the overlaid inscription frame.
Colour foils may be designed and printed by ibp on customer's demand.

Beeper
$90 \mathrm{~Hz} . . .20 \mathrm{kHz}$
Acoustical acknowledgement or refusal of key entries
Sound and loudness can be controlled by PLC

Beeper

$90 \mathrm{~Hz} . . .20 \mathrm{kHz}$
Acoustical acknowledgement or refusal of key entries
Sound and loudness can be controlled by PLC

2.2. Characteristic of Built-in Device

2.2.1 Built-in Device with 16 Keys

Dust and Humidity Protection

- In front of the key panel IP 54

Pulpit Opening

- Necessary spacing
$135 \times 135 \mathrm{~mm}^{2}$

Suspension Frame

- Outline
$148 \times 148 \mathrm{~mm}^{2}$
- Interior
$102 \times 102 \mathrm{~mm}^{2}$

Intrusion Depth

- Connectors fixed to the device
maximally 110 mm

Weight

- Complete device
$1,2 \mathrm{~kg}$

Connection with L24

- Input voltage range
- Input voltage typically
- Nominal power
$18 . .28$ V/DC
- Awaited maximum power (with full yellow illumination)
- Stand-by power, maximally

4,5 W

Connection with N230 and N110

- Input voltage range 85... 264 V~
- Inrush current, maximally 45 A on 230 V ~ and 25 A on 115V/AC
- Nominal power
- Awaited maximum power (with full yellow illumination)
- Stand-by power, maximally

9,3 W
4,5 W

2.2.2 Built-in Device with 32 Keys

Dust and Humidity Protection

- In front of the key panel IP 54

Pulpit Opening

- Necessary spacing

Suspension Frame

- Outline
- Interior

Intrusion Depth

- Connectors fixed to the device
maximally 110 mm

Weight

- Complete device

Connection with L24

- Input voltage range
- Input voltage typically
- Nominal power 24 V/DC
- Awaited maximum power 14 W (with full yellow illumination)
- Stand-by power, maximally 4,5 W

Connection with N230 and N110

- Input voltage range
- Inrush current, maximally
- Nominal power
- Awaited maximum power (with full yellow illumination)
- Stand-by power, maximally
85... 264 V~

45 A on $230 \mathrm{~V} \sim$ and 25 A on $115 \mathrm{~V} / \mathrm{AC}$ 20 W
14 W
4,5 W

2.2.3 Built-in Device with 60 Keys

Dust and Humidity Protection

- In front of the key panel

IP 54
Pulpit Opening

- Necessary spacing

Suspension Frame

- Outline
$340 \times 172 \mathrm{~mm}^{2}$
- Interior $294 \times 126 \mathrm{~mm}^{2}$

Intrusion Depth

- Connectors fixed to the device
maximally 110 mm

Weight

- Complete device

Connection with L24

- Input voltage range
- Input voltage typically
- Nominal power
18... 28 V/DC
- Awaited maximum power (with full yellow illumination)
- Stand-by power, maximally

24 V/DC
20 W
20 W
4,5 W

Connection with N230 and N110

- Input voltage range
85... 264 V~
- Inrush current, maximally

45 A on $230 \mathrm{~V} \sim$ and 25 A on $115 \mathrm{~V} / \mathrm{AC}$

- Nominal power
- Awaited maximum power (with full yellow illumination)
- Stand-by power, maximally

2.2.4 Built-in device with 128 Keys

Dust and Humidity Protection

- In front of the key panel

Pulpit Opening

- Necessary spacing

Suspension Frame

- Outline
- Interior
$436 \times 231 \mathrm{~mm}^{2}$

Intrusion Depth

- Connectors fixed to the device
maximally 110 mm

Weight

- Complete device

Connection with L24

- Input voltage range
- Input voltage typically
- Nominal power
- Awaited maximum power (with full yellow illumination)
- Stand-by power, maximally
18... 28 V/DC

24 V/DC
42 W
42 W
4,5 W

Connection with N230 and N110

- Input voltage range
85... 264 V~
- Inrush current, maximally

45 A on $230 \mathrm{~V} \sim$ and 25 A on $115 \mathrm{~V} / \mathrm{AC}$

- Nominal power 45 W
- Awaited maximum power (with full yellow illumination)
- Stand-by power, maximally

2.2.5 Built-in Device with 160 Keys

Dust and Humidity Protection

- In front of the key panel

Pulpit Opening

- Necessary spacing

Suspension Frame

- Outline
- Interior
$1012 \times 148 \mathrm{~mm}^{2}$

Intrusion Depth

- Connectors fixed to the device
maximally 110 mm

Weight

- Complete device

Connection with L24

- Input voltage range
- Input voltage typically
- Nominal power
- Awaited maximum power (with full yellow illumination)
- Stand-by power, maximally
18... $28 \mathrm{~V} / \mathrm{DC}$

24 V/DC
50 W
50 W
4,5 W

Connection with N230 and N110

- Input voltage range
85... $264 \mathrm{~V} \sim$
- Inrush current, maximally
- Nominal power

45 A on $230 \mathrm{~V} \sim$ and 25 A on $115 \mathrm{~V} / \mathrm{AC}$

- Awaited maximum power (with full yellow illumination)
- Stand-by power, maximally

50 W
4,5 W

2.2.6 Built-in Device with 240 Keys

Dust and Humidity Protection

- In front of the key panel

Pulpit Opening

- Necessary spacing

Suspension Frame

- Outline
- Interior

Intrusion Depth

- Connectors fixed to the device

Weight

- Complete device

IP 54
$519 \times 327 \mathrm{~mm}^{2}$
$537 \times 345 \mathrm{~mm}^{2}$
$491 \times 299 \mathrm{~mm}^{2}$
maximally 110 mm

5 kg

Connection with L24

- Input voltage range
18... 28 V/DC
- Input voltage typically

24 V/DC

- Nominal power

75 W

- Awaited maximum power 75 W (with full yellow illumination)
- Stand-by power, maximally

Connection with N230 and N110

- Input voltage range
85... 264 V~
- Inrush current, maximally
- Nominal power

45 A on $230 \mathrm{~V} \sim$ and 25 A on $115 \mathrm{~V} / \mathrm{AC}$

- Awaited maximum power 90 W (with full yellow illumination)
- Stand-by power, maximally

4,5 W

2.2.7 Built-in Device with 256 Keys

Dust and Humidity Protection

- In front of the key panel

IP 54

Pulpit Opening

- Necessary spacing
$807 \times 231 \mathrm{~mm}^{2}$

Suspension Frame

- Outline
- Interior
$820 \times 244 \mathrm{~mm}^{2}$

Intrusion Depth

- Connectors fixed to the device maximally 110 mm

Weight

- Complete device

Connection with L24

- Input voltage range
18... 28 V/DC
- Input voltage typically 24 V/DC
- Nominal power 80 W
- Awaited maximum power 80 W (with full yellow illumination)
- Stand-by power, maximally

Connection with N230 and N110

- Input voltage range 85... 264 V~
- Inrush current, maximally
- Nominal power 45 A on $230 \mathrm{~V} \sim$ and 25 A on $115 \mathrm{~V} / \mathrm{AC}$
- Awaited maximum power 90 W (with full yellow illumination)
- Stand-by power, maximally

4,5 W

2.2.8 Mounting Procedure for Built-in Device

The built-in devices contain all accessories necessary for mounting on their cases. At delivery, the clamping sheets are turned to the front side that is to the suspension frame. They are fixed by an M3 $\times 16 \mathrm{~mm}$ screw set. This is the way; the keyboards are fixed on pulpit plates of small or middle thickness. Especially metal pulpits require this way of orientation. For thick wooden or plastic pulpit plates with a thickness of 21 or more millimetres, the orientation of the clamping sheets must be reversed. To prevent this mode of usage, the cable catcher contains a second set of screws with a length of $\mathrm{M} 3 \times 25 \mathrm{~mm}$.

M3 x 16 mm

2.3. Characteristic of Operator Panel

2.3.1 Operator Panel with 16 Keys

Dust and Humidity Protection

- Front side inclusive of transition to tub

IP 65

- Rear side with M12-Socket

IP 54

- Rear side with D-Sub 9-Socket

IP 54

- Rear side with RJ-Socket
no water protection

Key Panel

- Mounting frame outline
$174 \times 174 \mathrm{~mm}^{2}$
- Mounting frame interior
$128 \times 128 \mathrm{~mm}^{2}$
- Inscription frame outline
$127 \times 127 \mathrm{~mm}^{2}$
- Inscription frame interior
$107 \times 107 \mathrm{~mm}^{2}$

Rectangular Aperture inside Locker Pulpit

- Necessary aperture
$128 \times 128 \mathrm{~mm}^{2}$
- Presumed sheet metal thickness 2... 3 mm

Intrusion Depth

- Connectors fixed to the device maximally 110 mm

Weight

- Complete device $\quad 1,4 \mathrm{~kg}$

Connection with L24

- Input voltage range
18... 28 V/DC
- Input voltage typically 24 V/DC
- Nominal power 9,3 W
- Awaited maximum power 9,3 W
(with full yellow illumination)
- Stand-by power, maximally

4,5 W

Connection with N230 and N110

- Input voltage range
85... 264 V~
- Inrush current, maximally
- Nominal power
- Awaited maximum power (with full yellow illumination)
- Stand-by power, maximally

10,2 W
9,3 W
4,5 W

2.3.2 Operator Panel with 32 Keys

Dust and Humidity Protection

- Front side inclusive of transition to tub

IP 65

- Rear side with M12-Socket

IP 54

- Rear side with D-Sub 9-Socket

IP 54

- Rear side with RJ-Socket
no water protection

Key Panel

- Mounting frame outline
$270 \times 174 \mathrm{~mm}^{2}$
- Mounting frame interior
- Inscription frame outline
- Inscription frame interior
$224 \times 128 \mathrm{~mm}^{2}$
$223 \times 127 \mathrm{~mm}^{2}$
$203 \times 107 \mathrm{~mm}^{2}$

Rectangular Aperture inside Locker Pulpit

- Necessary aperture
- Presumed sheet metal thickness

Intrusion Depth

- Connectors fixed to the device

Weight

- Complete device
$224 \times 128 \mathrm{~mm}^{2}$
2... 3 mm
maximally 110 mm

Connection with L24

- Input voltage range
18... 28 V/DC
- Input voltage typically
- Nominal power 24 V/DC
- Awaited maximum power 14 W
(with full yellow illumination)
- Stand-by power, maximally

4,5 W

Connection with N230 and N110

- Input voltage range
85... 264 V~
- Inrush current, maximally
- Nominal power
- Awaited maximum power (with full yellow illumination)
- Stand-by power, maximally 45 A on $230 \mathrm{~V} \sim$ and 25 A on $115 \mathrm{~V} / \mathrm{AC}$ 20 W
14 W
4,5 W

2.3.3 Operator Panel with 60 Keys

Dust and Humidity Protection

- Front side inclusive of transition to tub

IP 65

- Rear side with M12-Socket

IP 54

- Rear side with D-Sub 9-Socket

IP 54

- Rear side with RJ-Socket

Key Panel

- Mounting frame outline
- Mounting frame interior
- Inscription frame outline
- Inscription frame interior
$366 \times 198 \mathrm{~mm}^{2}$
$320 \times 152 \mathrm{~mm}^{2}$
$319 \times 151 \mathrm{~mm}^{2}$
$299 \times 131 \mathrm{~mm}^{2}$

Rectangular Aperture inside Locker Pulpit

- Necessary aperture
- Presumed sheet metal thickness

Intrusion Depth

- Connectors fixed to the device maximally 110 mm

Weight

- Complete device

Connection with L24

- Input voltage range
- Input voltage typically
- Nominal power
- Awaited maximum power (with full yellow illumination)
- Stand-by power, maximally

Connection with N230 and N110

- Input voltage range
- Inrush current, maximally
- Nominal power
- Awaited maximum power (with full yellow illumination)
- Stand-by power, maximally
$2,8 \mathrm{~kg}$
18... $28 \mathrm{~V} / \mathrm{DC}$

24 V/DC
20 W
20 W
$4,5 \mathrm{~W}$
85... 264 V~
$320 \times 152 \mathrm{~mm}^{2}$
$2 \ldots 3 \mathrm{~mm}$

45 A on 230 V ~ and 25 A on $115 \mathrm{~V} / \mathrm{AC}$
30 W
20 W
4,5 W

2.3.4 Operator Panel with 64 Keys

Dust and Humidity Protection

- Front side inclusive of transition to tub

IP 65

- Rear side with M12-Socket

IP 54

- Rear side with D-Sub 9-Socket

IP 54

- Rear side with RJ-Socket
no water protection

Key Panel

- Mounting frame outline
$270 \times 270 \mathrm{~mm}^{2}$
- Mounting frame interior
- Inscription frame outline
$224 \times 224 \mathrm{~mm}^{2}$
- Inscription frame interior
$223 \times 223 \mathrm{~mm}^{2}$
$203 \times 203 \mathrm{~mm}^{2}$

Rectangular Aperture inside Locker Pulpit

- Necessary aperture
- Presumed sheet metal thickness
$224 \times 224 \mathrm{~mm}^{2}$
2... 3 mm

Intrusion Depth

- Connectors fixed to the device maximally 110 mm

Weight

- Complete device $3,0 \mathrm{~kg}$

Connection with L24

- Input voltage range
18... 28 V/DC
- Input voltage typically 24 V/DC
- Nominal power 21 W
- Awaited maximum power 21 W (with full yellow illumination)
- Stand-by power, maximally 4,5 W

Connection with N230 and N110

- Input voltage range
- Inrush current, maximally
- Nominal power
- Awaited maximum power (with full yellow illumination)
- Stand-by power, maximally
85... 264 V~

45 A on 230 V ~ and 25 A on $115 \mathrm{~V} / \mathrm{AC}$
30 W
21 W
4,5 W

2.3.5 Operator Panel with 128 Keys

Dust and Humidity Protection

- Front side inclusive of transition to tub

IP 65

- Rear side with M12-Socket

IP 54

- Rear side with D-Sub 9-Socket

IP 54

- Rear side with RJ-Socket
no water protection

Key Panel

- Mounting frame outline
- Mounting frame interior
- Inscription frame outline
$462 \times 270 \mathrm{~mm}^{2}$
$416 \times 224 \mathrm{~mm}^{2}$
- Inscription frame interior

Rectangular Aperture inside Locker Pulpit

- Necessary aperture
- Presumed sheet metal thickness

Intrusion Depth

- Connectors fixed to the device maximally 110 mm

Weight

- Complete device
$416 \times 224 \mathrm{~mm}^{2}$
2... 3 mm
$3,6 \mathrm{~kg}$

Connection with L24

- Input voltage range
- Input voltage typically
- Nominal power
- Awaited maximum power (with full yellow illumination)
- Stand-by power, maximally
18... 28 V/DC

24 V/DC
50 W
50 W
4,5 W

Connection with N230 and N110

- Input voltage range
85... 264 V~
- Inrush current, maximally 45 A on $230 \mathrm{~V} \sim$ and 25 A on 115V/AC
- Nominal power
- Awaited maximum power (with full yellow illumination)
- Stand-by power, maximally

60 W
50 W
4,5 W

2.3.6 Operator Panel with 240 Keys

Dust and Humidity Protection

- Front side inclusive of transition to tub

IP 65

- Rear side with M12-Socke

IP 54

- Rear side with D-Sub 9-Socket

IP 54

- Rear side with RJ-Socket
no water protection

Key Panel

- Mounting frame outline
- Mounting frame interior
- Inscription frame outline
- Inscription frame interior
$558 \times 366 \mathrm{~mm}^{2}$
$512 \times 320 \mathrm{~mm}^{2}$
$511 \times 319 \mathrm{~mm}^{2}$
$491 \times 299 \mathrm{~mm}^{2}$

Rectangular Aperture inside Locker Pulpit

- Necessary aperture
- Presumed sheet metal thickness

Intrusion Depth

- Connectors fixed to the device maximally 110 mm

Weight

- Complete device

Connection with L24

- Input voltage range
18... $28 \mathrm{~V} / \mathrm{DC}$
- Input voltage typically

24 V/DC

- Nominal power 75 W
- Awaited maximum power 75 W (with full yellow illumination)
- Stand-by power, maximally

5,7 kg
$512 \times 320 \mathrm{~mm}^{2}$
$2 \ldots 3 \mathrm{~mm}$

Connection with N230 and N110

- Input voltage range
- Inrush current, maximally
- Nominal power
- Awaited maximum power (with full yellow illumination)
- Stand-by power, maximally

2.3.7 Mounting Procedure for Operator Panel

The first step is to put the mounting frame throw the pulpit or locker door. After that push the soild block from below over the M3-threaded bolts of the mounting frame. For fastening use the hexagonal bolts and screw them together. The hexagonal bolts are part of the scope of delivery.

2.3.8 Position of the holes for Operator Panel

Cutout for Operator Panel with 16 keys; $128 \times 128 \mathrm{~mm}^{2}$

Cutout for Operator Panel with 32 keys; $224 \times 128 \mathrm{~mm}^{2}$

Cutout for Operator Panel with 60 keys; $320 \times 152 \mathrm{~mm}^{2}$

Cutout for Operator Panel with 64 keys; $224 \times 224 \mathrm{~mm}^{2}$

Cutout for Operator Panel with 128 keys; $416 \times 224 \mathrm{~mm}^{2}$

Cutout for Operator Panel with 240 keys; $514 \times 332 \mathrm{~mm}^{2}$

3. Interface Description

3.1 Profibus-Interface

External Connections

- Target device Profibus-Master
- J/F case connector

9 -pin SUB D-female plug

- G case connector

Cable fixed on the rear side with attached transceiver box

Properties

- Physical interface type

RS 485, floating

- Transmission procedure

Profibus DP

- GSD-file ibp_9612.gsg
- Keyboard identification number 0×9612
- Default slave number 126

usable GSD-Modules

- Module	PCF 1612 - V16 T1 Z20, PCF 1612 - V32 T1 Z30
	PCF 1612 - V60 T1 Z64, PCF 1612 - V64 T1 Z40
	PCF 1612 - V128 T1 Z15, PCF 1612 - V240 T1 Z70
	PCF 1612 - V256 T1 Z121

3.2 Profinet-Interface

External Connections

- Target device
- J/F case connector

Properties

- Physical interface type
- Transmission procedure
- GSDML-File

Keyboard identification number

- Default IP-address
0×9612
192.168.1.2

3.3 EtherCat-Interface

External Connections

- Target device
- J/F case connector

Properties

- Physical interface type
- Transmission procedure
- Default register address
- XML-File

EtherCat-Master
RJ45 socket, optionally 4-pin flange socket M12

Ethernet, Slave
100BASE-TX or 10BASE-T, isolated 3
1000
PCF 1612 - X16 Z20, PCF 1612 - X32 Z30
PCF 1612 - X60 Z64, PCF 1612 - X64 Z40
PCF 1612 - X128 Z15, PCF 1612 - X240 Z70
PCF 1612 - X256 Z101

4. Range of Variations

4.1 Housing Design

Operator housing F

- Operator housing dispose of a removable inscription frame which facilitates enormously the change of the colour foil. Protection class from the front IP65 and IP54 with the connector M12 or D-Sub9. For mounting into Pulpits or switch cabinets.

Built-In housing J

- The change of the colour foil is from behind and has a protection class IP54 on the front side. This housing allows the mounting in wooden and steel pulpits.

Desktop housing G

- Desktop housing dispose of a removable inscription frame which facilitates enormously the change of the colour foil. The operating field is sunk a little bit with respect to the case surface. The protection class is IP54.

4.2 Interfaces

Pure Profibus Devices

- T1 Single Profibus interface equipped with the standardized 9-pin SUB D connector P1

EtherCat-Devices

- E1 Single EtherCat interface equipped with the standardized 4-pin flange socket M12
- E2 Single EtherCat interface equipped with the standardized RJ45 connecter

Profinet-Devices for Operator Panel

- N1 Single Profinet interface equipped with the standardized 4-pin flange socket M12
- N2 Single Profinet interface equipped with the standardized RJ45 connecter

Profinet-Devices for Built-in

- N1 Single Profinet interface equipped with the standardized RJ45 connecter

4.3 Power Connection

- L24 3-meter long power cord with multicore cable ends
- N230 3-meter long power cord with European Plug
- N110 2-meter long power cord with American Plug
- N22C 2-meter long power cord with Chinese Plug

4.4 Z-number

- Z15 128 keys with horizontal Incrementation
- Z17 160 keys with horizontal Incrementation
- Z20 16 keys with horizontal Incrementation
- Z30 32 keys with horizontal Incrementation
- Z40 64 keys with horizontal Incrementation
- Z64 60 keys with horizontal Incrementation
- Z70 240 keys with horizontal Incrementation
- Z181 256 keys with horizontal Incrementation

4.5 Ordering Code

Example 1: Built-in keyboard with 60 keys, one Profinet-Interface with RJ45 socket, power connection 24 Voltage and 60 keys with horizontal counting.
\rightarrow PCF 1612 J - V60 T1 L24 Z64 Example

Example 2: Operator Panel with 128 keys, one Profibus-Interface, power connection with European plug and 128 keys with horizontal counting.
\rightarrow PCF 1612 F - V128 T1 N230 Z15

PCF 1612	Product family
PCF	- Product abbreviation: Process Control Foilscreen keyboard
1612	Product number
F	- Case execution
-	- Separation mark between basic and special features
V128	- Number of keys
T1	- Interface description
N230	- Power connection
Z15	- Z-number

\square

5. Data Exchange

5.1 Commands from keyboard to PLC

Commands from PLC to keyboard till 256 keys								
Byte	Bit							
0	Sign of life							
1-7	Reserved							
8	8	7	6	5	4	3	2	1
9	16	15	14	13	12	11	10	9
10	24	23	22	21	20	19	18	17
11	32	31	30	29	28	27	26	25
12	40	39	38	37	36	35	34	33
13	48	47	46	45	44	43	42	41
14	56	55	54	53	52	51	50	49
15	64	63	62	61	60	59	58	57
16	72	71	70	69	68	67	66	65
17	80	79	78	77	76	75	74	73
18	88	87	86	85	84	83	82	81
19	96	95	94	93	92	91	90	89
20	104	103	102	101	100	99	98	97
21	112	111	110	109	108	107	106	105
22	120	119	118	117	116	115	114	113
23	128	127	126	125	124	123	122	121
24	136	135	134	133	132	131	130	129
25	144	143	142	141	140	139	138	137
26	152	151	150	149	148	147	146	145
27	160	159	158	157	156	155	154	153
28	168	167	166	165	164	163	162	161
29	176	175	174	173	172	171	170	169
30	184	183	182	181	180	179	178	177
31	192	191	190	189	188	187	186	185
32	200	199	198	197	196	195	194	193
33	208	207	206	205	204	203	202	201
34	216	215	214	213	212	211	210	209
35	224	223	222	221	220	219	218	217
36	232	231	230	229	228	227	226	225
37	240	239	238	237	236	235	234	233
38	248	247	246	245	244	243	242	241
39	256	255	254	253	252	251	250	249
Hex Value	0x80	0x40	0x20	0x10	0x08	0x04	0x02	0x01

Sign of life

Increments by one all 100 ms

- Keyboard Commands

Each bit reflects a key and can be evaluated directly. The key 1 has the hex value of 0×01 and is in Byte 1 in the first bit. The lifetime of the key press is 100 ms .
All keys are queried in a very fast cycle and thus all keys can be pressed and evaluated simultaneously.

5.2 Commands from PLC to keyboard

Commands from PLC to keyboard till 256 keys	
Byte	
0	Reserved
1	Alert Commands
2	Access List for frequency and volume
3	Settings of the Volume
4	Setting for frequency 1
5	Setting for frequency 2
6	Setting for frequency 3
7	Switching between Buzzer and speaker
8	Controlling LED1
9	Controlling LED2
10	Controlling LED3
11	Controlling LED4
...	\ldots
23	Controlling LED16
\ldots	\ldots
40	Controlling LED32
...	\ldots
67	Controlling LED60
...	\ldots
71	Controlling LED64
...	
135	Controlling LED128
...	\ldots
167	Controlling LED160
\ldots	\ldots
247	Controlling LED240 Exception of Profibus-Keyboard see on chapter 6
\ldots	...
260	Controlling LED253
261	Controlling LED254
262	Controlling LED255
263	Controlling LED256

- Byte 0: Reserved

Byte 0 is reserved for internal applications

- Byte 1: Alert messages

Lamp test and alert messages can be set by byte 1
0×91 Short lamp test (without change of the existing messages)
0xA0 Alert off
0xA1 Alert 1, unlimited
0xA2 Alert 2, unlimited
0xA3 Alert 3, unlimited
0xA4 Sound of acknowledge
0xA5 Alert 1, for 5 seconds
0xA6 Alert 2, for 5 seconds
0xA7 Alert 3, for 5 seconds
0xA8 Siren
If an alarm has been set, it must be switched off again with 0xA0.

- Byte 2: Access list for frequency and volume

With this byte, the volume and the different frequencies are changeable. Only when the function has been switched on can it be used
0×01 Release for volume
0×02 frequency 1 on; default: $1,5 \mathrm{kHz}$
0×04 frequency 2 on; default: $2,0 \mathrm{kHz}$
0×08 frequency 3 on; default: $3,0 \mathrm{kHz}$
$0 \times 10 \quad$ switching between speaker and buzzer

- Byte 3: Volume

The volume can be set in a scale of $1 \ldots 255$.
The value 0 is the default value and is set to the value 15 .

- Byte 4: frequency 1
- Byte 5: frequency 2
- Byte 6: frequency 3

These bytes can be used to generate 3 different frequencies. The calculation of the different frequencies is derived from the formula:
frequency $=[1 \ldots 255] * 10+500 \mathrm{~Hz}$

Byte 7: Speaker/Buzzer
The 7th byte allows you to switch from buzzer to speaker, only one is active at a time.
Allowed Range: 0... 1
Buzzer active: 0
Speaker active: 1

Byte 8...263: Controlling LEDs
Byte 8 to 263 allows the controlling of the brightness and colour. The following truth table contains all necessary information.

Byte								Colour
7	6	5	4	3	2	1	0	Bit 0-7
0	0	0	0	0	0	0	0	off
0	0	0	0	0	0	0	1	red
0	0	0	0	0	0	1	0	green
0	0	0	0	0	0	1	1	yellow
0	0	0	0	0	1	0	0	blue
0	0	0	0	0	1	0	1	magenta
0	0	0	0	0	1	1	0	cyan
0	0	0	0	0	1	1	1	white
0	0	0	0	1	0	0	1	red 80%
0	0	0	0	1	0	1	0	green 80%
0	0	0	0	1	0	1	1	yellow 80%
0	0	0	0	1	1	0	0	blue 80%
0	0	0	0	1	1	0	1	magenta 80%
0	0	0	0	1	1	1	0	cyan 80%
0	0	0	0	1	1	1	1	white 80%

Example: The third LED should light up white with 80% brightness.
> Write the binary value $\mathrm{B}^{\prime} 00001111$ or H'OF in byte 10

5.3 Profibus-Slave-Address

The slave address can be addressed via the bus or assigned manually. If the address has been assigned, it will remain even after switching the device on and off. The possible range of slave numbers is between 2 and 125 .

To reset the Slave-address, the first 4 buttons must to be pressed for 5 seconds.

Manually assignment of the Slave-address

The manual assignment of the slave address takes place over the hundreds, tens and units and the active position is illuminated in yellow. The single number is illuminated green in every range. If the address has been selected, press the red button for leave the settings.
Saving the address is only possible if it is not outside the permitted range.
The value 126 is used for automatic assignment.
Example: Select the Slave-address 115.
> Hundreds position is yellow and number 1 is illuminated green.
$>$ Tens position is yellow and number 1 is illuminated green.
> Units position is yellow and number 5 is illuminated green.
> Save with the red bottom.

5.4. GSD Files Shipped with the Keyboard

The GSD files delivered with every keyboard are pure ASCII text files.
All GSD files contain numerous comments concerning the configuration and the parameter values.

6. Exception of the Profibus-Keyboard with 240 Keys.

The colour Information has packed into one Byte because the Profibus-telegram is limited to 244 Bytes
The key query remains unchanged.

6.1 Commands from the PLC to the Keyboard

Commands from PLC to keyboard with 240 keys	
Byte	Reserved
0	Alert Commands
1	Access List for frequency and volume
2	Settings of the Volume
3	Setting for frequency 1
4	Setting for frequency 2
5	Setting for frequency 3
6	Switching between Buzzer and speaker
7	Controlling LED1 and LED2
8	Controlling LED3 and LED4
9	Controlling LED5 and LED6
10	Controlling LED7 and LED8
11	
\ldots	Controlling LED233 and LED234
124	Controlling LED235 and LED236
125	Controlling LED237 and LED238
126	Controlling LED239 and LED240
127	

Byte 8...127: Controlling LEDs
Byte 8 to 127 allows the controlling of the brightness and colour. The following truth table contains all necessary information.

Example: Third LED green and fourth LED red
$>$ Write in byte 9 a hex value of $\mathrm{H}^{\prime} 21$.

Nibble 2				Nibble 1				colour
Bit 4-7 0-3								
7	6	5	4	3	2	1	0	
0	0	0	0	0	0	0	0	off
0	0	0	1	0	0	0	1	red
0	0	1	0	0	0	1	0	green
0	0	1	1	0	0	1	1	yellow
0	1	0	0	0	1	0	0	blue
0	1	0	1	0	1	0	1	magenta
0	1	1	0	0	1	1	0	cyan
0	1	1	1	0	1	1	1	white
1	0	0	1	1	0	0	1	red 80\%
1	0	1	0	1	0	1	0	green 80%
1	0	1	1	1	0	1	1	yellow 80%
1	1	0	0	1	1	0	0	blue 80%
1	1	0	1	1	1	0	1	magenta 80%
1	1	1	0	1	1	1	0	cyan 80%
1	1	1	1	1	1	1	1	whit 80%

